Expression of cytochrome p450 and other biotransformation genes in fetal and adult human nasal mucosa.

نویسندگان

  • Xiuling Zhang
  • Qing-Yu Zhang
  • Dazhi Liu
  • Ting Su
  • Yan Weng
  • Guoyu Ling
  • Ying Chen
  • Jun Gu
  • Boris Schilling
  • Xinxin Ding
چکیده

Despite recent progress in the identification and characterization of numerous nasal biotransformation enzymes in laboratory animals, the expression of biotransformation genes in human nasal mucosa remains difficult to study. Given the potential role of nasal biotransformation enzymes in the metabolism of airborne chemicals, including fragrance compounds and therapeutic agents, as well as the potential interspecies differences between laboratory animals and humans, it would be highly desirable to identify those biotransformation genes that are expressed in human nasal mucosa. In this study, a global gene expression analysis was performed to compare biotransformation enzymes expressed in human fetal and adult nasal mucosa to those expressed in liver. The identities of a list of biotransformation genes with apparently nasal mucosa-selective expression were subsequently confirmed by RNA-polymerase chain reaction (PCR) and DNA sequencing of the PCR products. Further quantitative RNA-PCR experiments indicated that, in the fetus, aldehyde dehydrogenase 6 (ALDH6), CYP1B1, CYP2F1, CYP4B1, and UDP glucuronosyltransferase 2A1 are expressed preferentially in the nasal mucosa and that ALDH7, flavin-containing monooxygenase 1, and glutathione S-transferase P1 are at least as abundant in the nasal mucosa as in the liver. The nasal mucosal expression of CYP2E1 was also detected. These findings provide a basis for further explorations of the metabolic capacity of the human nasal mucosa for xenobiotic compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Communication EXPRESSION OF CYTOCHROME P450 AND OTHER BIOTRANSFORMATION GENES IN FETAL AND ADULT HUMAN NASAL MUCOSA

Despite recent progress in the identification and characterization of numerous nasal biotransformation enzymes in laboratory animals, the expression of biotransformation genes in human nasal mucosa remains difficult to study. Given the potential role of nasal biotransformation enzymes in the metabolism of airborne chemicals, including fragrance compounds and therapeutic agents, as well as the p...

متن کامل

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

Evaluation of CYP2C9 activity in rats: use of tolbutamide alone and in combined with bupropion

A “cocktail”of several probe drugs is often used to evaluate metabolic activity of multiple cytochrome P450 enzymes in one session. Some interactions among probe drugs can appear and may impact the rate of biotransformation of other ones. Our presented work was to aim on the influence of bupropion on rat cytochrome P450-mediated metabolism of tolbutamide. The biotransformation rates of tolbutam...

متن کامل

In vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa.

Acetaminophen overdose causes toxicity in liver and extrahepatic tissues. Although it is well established that cytochrome P450 enzymes play a critical role in the metabolic activation of acetaminophen, it is not yet clear whether acetaminophen toxicity in extrahepatic tissues is a consequence of hepatic biotransformation. The aim of this study was to determine whether extrahepatic acetaminophen...

متن کامل

Cloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium

Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 33 10  شماره 

صفحات  -

تاریخ انتشار 2005